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Hierarchically correlated patterns in Potts neural networks
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The Q-state Potts neural network is extended to allow for storage and retrieval of hierarchically corre-
lated patterns. A Markovian scheme is used for generating the patterns and their ancestors. Two learn-
ing rules are considered. The first one is a modified Hebbian learning rule involving a ferromagnetic
term. The second one is derived from the pseudoinverse learning rule. Using replica-symmetric mean-
field theory, the free energy and the fixed-point equations for the order parameters are derived for gen-
eral Q and arbitrary temperature 7. To compare the performance of both learning rules, the storage
capacity and the retrieval quality are calculated for a Q =3 network at 7 =0 and different hierarchies of

two generations.

PACS number(s): 87.10.+¢, 64.60.Cn, 75.10.Hk

I. INTRODUCTION

In many cases of data classification and analysis
hierarchical organization is a natural feature. Objects be-
longing to the same group are strongly correlated while
objects sitting in distinct groups are only weakly correlat-
ed. The letters of the alphabet, e.g., serve as an example,
because they can be organized in classes of letters such as
{E,F,P,R} and {C,G,0,0}.

In the context of multistate Potts neural networks,
minimal correlations induced by a so-called bias [1] have
been considered before [2,3]. Hierarchical correlations in
these multistate models have not yet been treated. This is
the purpose of the present contribution.

Several approaches to memorize hierarchically corre-
lated patterns in binary networks have been examined in
the past. One procedure is to represent the hierarchical
organization explicitly into the spatial structure of the
network [4—6]. The couplings between the neurons in
different spatial blocks are defined separately from the
couplings between the neurons inside the blocks. Anoth-
er procedure is to take the network spatially homogene-
ous. The synaptic couplings between all neurons are of
the same type, but the patterns are still hierarchically or-
ganized in the sense described in the beginning. Such
models have been introduced by Parga and Virasoro [7].
They prosed a Markovian scheme to generate the pat-
terns, presented an appropriately generalized Hebb rule
and studied the retrieval behavior in the limit of low
loading. Related models memorizing an extensive number
of patterns have been examined in [8-11] by using the re-
plica approach. In this work, these results are extended
to the retrieval of hierarchically correlated patterns in a
spatially homogeneous Q-state Potts network. Hereby,
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two different learning rules are proposed. The first one is
a modification of the Hebb rule, the second one is derived
from the pseudoinverse rule. Their performance is com-
pared for Q <3 models at zero temperature.

The rest of this paper is organized as follows. In Sec.
I1, the model is described. The two learning rules are in-
troduced in Sec. III and a naive signal-to-noise ratio
analysis is performed. Section IV studies the network
with the modified Hebb rule involving a ferromagnetic
term. Using replica-symmetric mean-field theory, the
free energy is written down for general Q and arbitrary T.
Relevant order parameters are defined. The retrieval
solutions of the fixed-point equations for Q <3 models
are studied in detail. In particular, for finite loading,
a=0, the critical temperature for retrieval is calculated
and for extensive loading, a0, the storage capacity and
the retrieval quality are discussed at 7 =0. In Sec. V, an
analogous treatment is given for networks equipped with
the learning rule derived from the pseudoinverse rule.
Section VI presents some conclusions about the perfor-
mance of both types of networks. Finally, in the Appen-
dix some details are given on the derivation of the learn-
ing rule used in Sec. V.

II. MODEL

Consider a system of N neurons. Each neuron can be
described by a Potts spin e{L2,...,0},
i=1,2,...,N. The neurons are interconnected with all
the others by a synaptic matrix of strength J,-’]‘-’ which
determines the contributions of a signal fired by the jth
presyhaptic neuron in state / to the postsynaptic potential
that acts on the ith neuron in state k. The energy poten-
tial A o, of neuron 7, which is in a state o, is given by

N 0
= Kl
hi,o,« > X J; Ug, kYo 1 » (1)
i=1kl=1 /
i

with u the Potts spin operator defined as u, ,=Q8,
—1. We assume that the synaptic couplings are sym-
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metric, i.e., J,!j‘-l =J J’,k The dynamics of the Q-state Potts
model is defined as in [3] and [12]. At zero temperature
the state of the neuron in the next time step is fixed to be
the state that minimizes the induced local energy (1).
The stable states of the system are those configurations
{o;}] where every neuron is in a state that gives a
minimum value to {h,;ai }. For symmetric couplings this
stability is equivalent to the requirement that the
configurations {o;} are the local minima of the Potts
Hamiltonian

_ 1 X g u
H=—> 2 2 Jijuo kto 1 - 2
ij=1kl=1 J
i#j

In the presence of noise there is a finite probability of
having configurations other than the local minima. This
can be taken into account by introducing an effective
temperature T =1/p.

To build in the capacity for learning and memory in
this network, its stationary configurations representing
the retrieved patterns must be correlated with the stored
patterns {&*}, u=1,2,...,p fixed by the learning pro-
cess. The latter are allowed to be hierarchically correlat-
ed. To generate this set of patterns we follow a procedure
analogous to that proposed by Gutfreund [11]. Suppose
that the p patterns are organized in a hierarchical struc-
ture of L levels with p; Xp, X -+ Xp;, 1 =1 =L patterns
at the /th level. Here p; denotes the number of descen-
dants of a pattern of generation k —1. Hereby it is as-
sumed that all patterns of the same generation have an
equal number of descendants. At the /th generation level,
the patterns are grouped in p; X -+ - Xp,_ classes, each
containing p, members. To identify a pattern of genera-
tion ! we use / numbers u, * -+ u; =[,; indicating how to
go down in the hierarchy. An example of such a struc-
ture with two levels is shown in Fig. 1.

The hierarchical structure is generated by a Markov
process in the flowing way. The oldest ancestor is gen-
erated first. It determines the probability distribution of
the p, patterns at the first generation level. The latter in
turn define the probability distribution of the p, Xp, pat-
terns at the next generation and so on. So, each genera-
tion is determined by its ancestors only.

The conditional probability to generate the patterns of
level , given the patterns at level [ —1, is defined by
1+B

Q ’
where 1<I<L, k,k'€{1,2,...,Q}, and £)=1, for all
i€e{l,2,...,N}. The B,‘(I}c are considered as bias pa-
rameters. In contrast with [2,3], the bias parameters are
now elements of a Q XQ matrix [B"]. Since the
P,(k,k’) are probabilities, the matrix elements B’} have
to satisfy

—1<B{). <0 —1

Pk, k=P =k|1 ' =k")= (3)

and

2 () 2 )
2 Bk,k'= 2 Bk,k'=0 . 4)

Eu

£2

2pa €,>,1

/)
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&g en ¢ e
FIG. 1. Hierarchical structure consisting of two levels
(L =2). The patterns €%, =1,...,p;;u2=1,...,p, belong
to the second level, the patterns §” Lu;=1,...,p, belong to the
first one. The pattern £° is the oldest ancestor.

To ensure that a component gﬁ‘ ! of a pattern at generation
I has a higher probability to be equal to its nearest ances-

tor é‘f‘ =1 than to be equal to any other state, it is assumed
that

B\ =B\, with k#k’ . 5

It is convenient to rewrite the matrix [B”] in the fol-
lowing form:

[B1=a,(6"], ®

where 0<a; <1. We call g; the bias amplitude and the
Q X Q matrix [b"] the bias structure. We recall that the
elements of the bias matrix [b'"] have been chosen in ac-
cordance with the conditions (4) and (5).

Generating the patterns according to the probability
distribution (3) permits us to classify them in a hierarchi-
cal structure. Indeed, we first define the correlation ma-
trix [ C] with elements

1 N
Bm¥n  (Q—1)N 2 ug'i"",gz.'" )

i=1

)

We remark that for equal indices m =n, correlations
within the same level are measured whereas for m=n,
correlations between different levels are indicated. For
m =n =1, the correlations are taken to be zero in the
corresponding binary networks of [7—10] but not in [11].
Here we also allow those to be nonzero.

Then, using the conditions (4) and (5), it is easy to
prove the following inequalities:

S R e A

=>C_ — (8)
Fmbm+1- - HFoPmVm +1 Vi—1
- _ > 2C _
By — B p B —Vr Fmbm 1 BoBmYim 41+ Y1
> 2C. _ . 9)
KBV

The first inequality (8) expresses the fact that a pattern is
more strongly correlated with its own ancestor than with
the other ancestors. The other inequalities (9) indicate
that within the same level patterns of the same class are
more strongly correlated than patterns from distinct
classes. In particular, the larger the distance from two
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patterns to their nearest common ancestor, the smaller
their correlations. We notice that a level / the patterns
are classified in [ —1 classes, leading to [ different values
for the correlation coefficients, in contrast with the model
for biased patterns studied in [3].

In the sequel, we consider a hierarchical structure of
two generations. The first generation consists of a finite
number p, of ancestor patterns. The second generation
has a finite number p; of classes, each containing an ex-
tensive number p, of patterns. Only the patterns of the
second level are interpreted as patterns that have to be
retrieved. The other patterns are just artificial construc-
tions permitting an efficient classification of the patterns
of the second level.

III. LEARNING RULES AND SIGNAL-TO-NOISE
ANALYSIS

To store the p =p, +p,;p, patterns defined above, we
propose two different learning rules. First, we consider
the learning rule

Py Py
Kl — —B )
Ju Q2N € 2_1”22_1 t‘x“zk §f‘,k
X —B )
(u§71#2’1 é_fi‘l,l
Py
+61 2 (u ™ ——Bk)(u ™ —B,H-'yuk,,
,u1=1 gi -k gj A

(10)

The patterns of the first generation are denoted by
)

Kl 1 1 oz
= (u —B Nu -
Y Q2N | 1-K, “]2_1 #22_ g T g T g

1 h

+_____.
K,—K, u12='1

Q
B #lk_ ZIP(P)Bp,k
p=

i

where K, is given by (12) and

1

Q Q
o= 2, | 2 P B

k'=1

K, = (14)

Extending the method in [14], this rule is derived from
the multistate generalization of the pseudoinverse learn-
ing rule [15,16] by expanding the inverse correlation ma-
trix [C 7!] in powers of 1/p, and keeping the terms up to
order 1/p2. Consequently, we name this rule the truncat-

Q 1
o, S P(p)B,, +

g“ Lu,=1,...,p,, the patterns of the second generation
by £"%u=1,... P13 o= L... P2 where Hap =y
Furthermore, B, k,—Bk 2 and By -—Bk specify the ma-
trices [B®] and [B(1 ]. The latter is in fact a Q-
dimensional vector.

The coefficients in (10) can be chosen freely. The fol-
lowing choices are made: €,=1, €,=y =0, indicating
that only the patterns of the second generation are
memorized, €,=¢€;=1, y =0 telling that patterns of both
generations are stored and

1 -1

6=(1—K,) ! ¢=|1— o= sz
and
y=0—1, (11)
with
1
K=o P(k) B? .. (12)
= 0(0- 2, El bk

and P(k)=(1+B;)/Q. The last choice explicitly in-
cludes a ferromagnetic term and is motivated by the
naive signal-to-noise analysis studied below.

In choosing these storage prescriptions we were in-
spired by the work of Gutfreund [11] and Buhmann,
Divko, and Schulten [13] on the Q =2 model. Gutfreund
has shown that an appropriate bias term has to be sub-
tracted to ensure the storage of an extensive number of
patterns at a certain generation of the hierarchy. In the
work of Buhmann, Divko, and Schulten it is shown that
the retrieval properties of neural networks are improved
by introducing a ferromagnetic term and by choosing ap-
propriate values for the prefactors of the other terms.

Second, the following learning rule is proposed:

Bg“l,l)

Qo
> P(p)B

Q
pk 2 P(p)Bp,l ’
1 p=1 p=1

j o p=1

(13)

ed pseudoinverse learning rule. A sketch of this calcula-
tion is given in the Appendix. In comparison with the
pseudoinverse learning rule itself, (13) has the advantage
that it is not required to invert the correlation matrix
[C]. Inverting [C] is a huge numerical problem, because
it is a p Xp matrix with p growing linearly with the sys-
tem size N. Similarly as in (10), the patterns of both the
first and the second generation are memorized. We re-
mark that here the prefactors of each term are fixed.

At this point it is interesting to note the following. For
a two-state model, the synaptic couplings (10) reduce to
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1 /1
=y 1& 21 21(5‘”‘2 £'a, g — g,
= e
Py
+e 3 (& —a ) —ap+y L, (19
# =1

where £, €'=+1. For ¢,=1 and €; = =0, the learn-
ing rule reduce to the one in [11]. Taking
e,=1/[1—a?], ,=1, y=a,=0, and making the substi-
tution _E,‘? la, —>§',u ! on the ancestor patterns, the model
studied in [8,9] is recovered. Choosing €,=1/(1—a3),
€,=1/(1—a?),and y =1, the learning rule (15) complete-
ly coincides with the Q =2 limit of the rule (13).

The difference in storage properties between both
learning rules is already suggested by a naive signal-to-
noise analysis. For an arbitrary pattern of the second
generation, say £, stored with the learning rule (10), the
local energy at neuron  in the limit N — oo is given by

hi(o;)= —62(1‘5?"",04 _Bg?‘,o. e —1—- «B§’~,§M' N1
—e(ug, — B, W u g n =B g »
—Y«“a.,g""' » (16)

where ({ )) denotes an average over the patterns £* and
™. From this equation it follows that only for ap-
propriate values of the coefficients €, €, and ¥ and a
specific choice of the bias the pure signal

—(Q—1u g is restored. Indeed, precisely for the

choice (11) we get

h[(O',):_(Q"‘l) (ué,?‘”,a,v—B§?,a,-)+(u§%,a,._30f)
((u A —B g »
X £k 1 5 +«ua“§w»
Q—1-— 3 B} ‘
Q=

(17)

such that the local energy h;(o;) equals the pure signal
term for a second generation bias matrix of the form
By =a,uy x, 0=a, =1, whatever the choice for the bias
By, in the first generation.

In the case of the truncated pseudoinverse learning

rule (13) the local energy at neuron i for the pattern &
is

-1 -
hilo) ==k, Maro, ~Be. 1Q 1 CBagx ]
L 1B, S P(p)B
K,—K, | o E, PPy

Q
X <<B§A'§}JJ - 2 P(p )Bp,é’“‘l »

2 P(p)B,,. 2 P(p)(B  au » . (18)

Working out the average {( )) it becomes clear that the
pure signal term is restored for all possible bias types, in
contrast with the foregoing rule (10).

In the case of extensive loading of patterns in the Q =2
model with any of these learning rules the variance of the
noise caused by the other patterns equals V a, exactly as
in the unbiased case. So we expect a storage capacity
a,=0.1379 independent of the bias. Since for @ =3 the
variance of that noise depends explicitly on the bias, the
storage capacity will also depend on it. These assertions
are verified by the numerical study of the replica-
symmetric fixed-point equations presented in the next
section.

IV. THE MODEL WITH A FERROMAGNETIC TERM

A. Replica-symmetric mean-field theory

To study in detail the neural network model defined by
(2), which has learned a two-level hierarchical set of pat-
terns, we use the standard replica-symmetric mean-field
theory. This means that we have to calculate the free en-
ergy of the model and derive the corresponding fixed-
point equations for the order parameters.

Since both (10) and (13) memorize the ancestors pat-
terns and their descendants, we have to look for solutions
representing a macroscopic overlap with patterns of both
generations. Consequently, it is assumed that all the pat-
terns of the first generation and a finite number s, of the
D, patterns in each class of the second generation
(s, <p,) are condensed.

After some algebra we arrive at the following expres-
sion for the free energy density for the model with the
ferromagnetic term (10):

Py 52 1 Py 2 _Z__ Qo 2
f—_ez 2 2 n’l“],_‘2 E‘El z_ m#l-i- Q g MI
w=1p,= p =1 =1
1 20~ 1 ~ aeq
+ —aeB(Fg —rqg)+ —ae,g —
2 27 2[1-Belg—q)]

a 5 —
+Eﬁln[l Be(G—q)]

—%«fRQXQDzln

S explB, (z,6)] J)) . a9

o=1
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where a=p,p, /N is the loading of the second generation
and with {{ )) denoting the average over the p, ancestor
patterns and the p;s, condensed patterns of the second
generation. The integral is taken over a Q X Q dimension-
al space and the Gaussian measure Dz is given by

[ -
Dz= I (dzj/V2mexp(—zk. /2) (20)
k=1

and #,(z, &) reads

Q O Q
Az,E)=¢e; 3 \/arP(k)P(k,k')(uklyo*Bk’U)zkk:+—;—aﬁez(T—r) 2 P(k)P(k,k’ Nug o Bk,g)2
kk'=1 Kk’
Py 5 Py 1 1)
+e 3 E s, —B , )mu1u2+61 2 (u —-B(,)mu]+ > u M. (21)
p=1p,= § o p=1 § o Q | =

This free energy (19) depends on the following order parameters:

_ 1
mumz——ﬁg « s, & ,o,-)» , (22)
_1J
m”‘—_ﬁ,gﬁ <<<u§f1,ai—B”f>>> , (23)
1 N
M= Wg«(““’)» (24)
13 L
q:—N 2 2 P(k)P(k’k')«<uk',a'.—Bk U‘->2>> ’
i=1kk'=1 ! o
(25)
1 & &
1= 3 3 PUIPGRKIK (g, =By PIN
N St
(26)

where ( ) stands for the thermal average.
The order parameter m 1y which is a component of
(2)

Hy
the ps,-dimensional vector m'*’, measures the overlap of
the network configuration with a pattern & ? of the

second generation. The overlap with a pattern _é,‘u ! of the
first generation is presented by m By It is a component of
the p,-dimensional vector m‘’’. In both definitions the
bias has been subtracted to account for the random over-
lap caused by the nonuniform probability distribution (3).

The order parameter M, gives information about the
number of neurons in the state I. Its value varies between
—land Q —1.

The order parameter g is the extended Edwards-
Anderson order parameter, which measures the correla-
tions between the neurons. In contrast with the Hopfield
model with hierarchically organized patterns [8—11] it
explicitly contains the bias. For Q =2, using u ko, = ko,

[
o, =ko;a,, and B,
now Ising spins *1, Eq. (25) reduces to

=0;a,;, where the k and o; are

g=(1- 2 (o) N . (29)

1=1

Hence the multiplicative bias factor (1—a3) can be taken
out of the definition [3].

The order parameter § measures the autocorrelation of
the neurons. For the Q =2 model, § plays no role as an
order parameter since it takes the constant value
g=1—ai

The order parameters » and 7 give information about
the overlap with the noncondensed patterns, i.e., r
represents the total mean-square random overlap with
these patterns and 7 measures their total autocorrelation.

These order parameters satisfy fixed-point equations
obtained in the standard way by taking the relevant
derivatives of the free energy. Their retrieval solutions
correspond to overlap vectors of the form
m(““(ml, ...,0) and m‘2)=(m2,0,...,0) with
m,>>m, >0 Smce each pattern of the second genera-
tion has an ancestor at the first generation, the network
configuration has a macroscopic overlap with both pat-
terns. Due to the condition m,>>m >0, the above
mentioned solution represents retrieval of a pattern of the
second generation. The maximal value of m,, represent-
ing perfect overlap with a pattern of the second genera-
tion, reads

o-1-L $
1L
2 0, @

Bl . (30)

The corresponding overlap with the ancestor pattern is
then given by

s S BBuBe 0D
—, @ Q% =

which can be shown [by using Eqgs. (4) and (5)] to be
smaller than the overlap m,. We remark that solutions
of the form m'"’=0 and m®»=(m,,0, . . .,0) with m,7#0
do not appear.
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B. Discussion of the retrieval properties

To illustrate the retrieval properties of these networks
we have solved numerically the fixed-point equations for
the retrieval solutions of Q <3 models at 7 =0. In partic-
ular, we have calculated the storage capacity as a func-
tion of the bias amplitude and the retrieval quality as a
function of the loading a=p,p, /N of the second genera-
tion.

For the Q =3 model we choose two representative bias
matrices, i.e.,

2 —1 —1
[B,]=a|—1 2 -1/,
-1 -1 2
(32)
1 o0 -1
[By]=a|—1 1 0
0 —1 1

with 0=a < 1. For simplicity we have taken a =a, =a,.
Since the diagonal elements of both matrices are larger
than the nondiagonal ones, & " has a higher probability
to be equal to its ancestor é‘f ! than to be equal to any oth-
er state. For [B,] all the other states have equal proba-
bility, for [B,] they have different probability. At this
point we notice that [B;] is of the specific form
By ;- =au, - restoring the pure signal term in the signal-
to-noise analysis of the local field corresponding with
learning rule (10) [see Eq. (17)].

Due to the conditions (4) and (5) the bias matrix of the
Q =2 model is fixed and given by

—1

1 1 (33)

[B]l=a

Let us start with a finite number of patterns in both the
first and second generation. If there are only a finite
number of patterns memorized, the free energy reduces
to the a—0 limit of (19), which depends on My My s
and M;. Solving numerically the appropriate fixed-point
equations teaches one that the retrieval solutions exist up
to a critical temperature 7T,. At T, the system has a
second order (Q =2) or first order (Q = 3) phase transi-
tion to the paramagnetic phase. We find that the
behavior of T, as a function of the bias amplitude a is
qualitatively the same for the Q =2 and Q = 3 networks.

In the following, we focus attention on the Q =3 mod-
el. At a =0 we find that T,=2.185. For the models
without the ferromagnetic term, i.e., ¥ =0, T, decreases
rapidly with increasing g, similarly as in [2]. For the bias
type [B, ], T, becomes even zero at a =1.

Introducing the ferromagnetic term and choosing the
coefficients €,, €;, and y according to Eq. (11) increases
T, substantially. For the choice [B;], T.=2.185 what-
ever the value of the bias amplitude a. This result can be
proved analytically. Indeed the fixed-point equations of
the retrieval solutions of the network with [B,] type pat-
terns are equivalent with those of the Potts model with
unbiased patterns [17]. However, for [B,] type patterns,
T, slightly depends on a. This behavior is also in agree-

ment with the signal-to-noise analysis since for all possi-
ble choices of the bias matrices, except [B;], the signal
term (17) depends on the bias amplitude.

Next we allow an extensive number of patterns in each
class of the second generation. First, we investigate the
effect of storing, in addition, the (finite number of) ances-
tor patterns. Therefore, we turn to Fig. 2 indicating the
maximal value of the loading of the second generation,
a,, for which retrieval solutions exist. The dotted lines
correspond with the network that only stores patterns of
the second generation (€,=1 and €;=y=0). The solid
curves denote the model that memorizes the patterns of
both generations (e,=¢€;=1 and y =0). Comparing these
two situations, we conclude that storing also the ancestor
patterns increases the storage capacity. Clearly, if also
the ancestors patterns ar memorized, it is easier for the
network to discriminate between the different classes.

Comparing the two different choices of bias matrices
we see that in all cases the [B,] model has the largest
storage capacity. This seems to be consistent with the
fact that this model has the weakest correlations (7). In
particular in the neighborhood of @ =1, the enhancement
is very small for the [B;] model, whereas it is still
significant for the [B,] model. The corresponding curves
for the Q =2 model show a similar behavior as for the
Q =3 network with [ B, ] type patterns.

Second, we study the consequences of introducing the
ferromagnetic term and choosing appropriate values for
the coefficients €,, €;, and y [see (11)]. The dashed lines
in Fig. 2 denote the model with the ferromagnetic term
and the appropriate prefactors (11). We see that a, is in-
creased by introducing the ferromagnetic term. In par-
ticular, for the most extreme choice of the bias matrix,
i.e., [B;], the storage capacity is still substantially
different from zero at a =1. However, its maximal value
a,=0.4144 at a =0 is never reached. We remark that
the storage capacity of the corresponding Q =2 model,
however, is independent of the bias amplitude:
a.(a=20)=0.1379. This different behavior is in agree-
ment with the signal-to-noise analysis. We further notice
that the network loaded with [B,] type patterns has a
higher storage capacity than the network loaded with
[B,] patterns. This is in agreement with the fact that the
former model corresponds with the weakest correlations
(7.

The influence on the retrieval quality becomes clear
from Figs. 3 and 4. They show the overlap m; and m, as
a function of the loading a of the second generation. For
a =0, the corresponding overlap diagram for the Potts
model with unbiased patterns [3] is recovered. We see
that the overlap m, is nearly maximal over a long inter-
val in a, indicating almost perfect retrieval. Increasing a,
the overlap diagram retains a similar form, but the maxi-
mal overlap decreases. We notice that the maximal
values of m, and m, are exactly given by expressions (30)
and (31), respectively. The overlap for the [B;] model
decreases more quickly as a function of a. For each
value of a, m, is substantially larger than m, indicating
retrieval of a pattern of the second generation. Both
figures show that the model with the ferromagnetic term
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FIG. 2. The storage capacity at =0 as a function of the
bias amplitude a for the Q =3 network with the rule (10) and
with [B,] (1) and [B,] (2) type patterns [see Eq. (32)]. The dot-
ted (solid and dashed, respectively) curves correspond with
e,=1 and €,=y=0 [e;=€;,=1 and y =0, respectively, a fer-
romagnetic term according to (11)]. It is seen that storing also
the ancestor patterns and introducing a ferromagnetic term im-
proves the storage capacity.

has the largest overlap, indicating that its retrieval quali-
ty is the highest.

In this section, we have studied the ability of Potts
neural networks to retrieve hierarchically correlated pat-
terns, which are memorized with the learning rule (10).
We have seen that memorizing the ancestor patterns of
the first generation enhances the storage capacity of the
patterns of the second generation. Furthermore, we have
shown that the presence of a ferromagnetic term and the
choice of appropriate prefactors [see Eq. (11)] even fur-
ther increases this storage capacity. It also gives rise to
the best retrieval quality.

V. THE TRUNCATED PSEUDOINVERSE MODEL

A. Replica-symmetric mean-field theory

The study of the neural network model defined by (2)
and the truncated pseudoinverse rule (13) proceeds via
the replica-symmetric mean-field approximation of the
free energy density which reads

LS 3 m2 +1e S m2 + LM+ LaedBrg—rg)+iaeg 4 2 n[1-Beg—q)]
= —€ m 5 - X -
f=2e 2 2 M6 & M Ty e T T o —pesg —q)] 28 i
L $ (34)
_E<<IRQXQDZIH 21 exp[BH ,(z,€)] »
where
__ 1 -1 =1 35)
62 I_KZ’ 61 K2"—K1 ’ y Kl ’

and ¥£,(z,§) is given by

2'5 1 1 1 1
2.0 0 r
e, 0.4
1.5 -
e 0.7
1,0 e ° -
L, 0.7
.................. N 0.4
0.5 o
0.0 T T T T
0.0 0.1 0.2 0.3 0.4 0.5
a

FIG. 3. The overlap m, (upper five curves) and m, (lower
four curves) at T=0 as a function of a for the Q =3 [B; ] mod-
el with the rule (10) for different values of the bias amplitude a.
The dotted (solid) lines represent the model with (without) the
ferromagnetic term and appropriate coefficients (11). A fer-
romagnetic term is seen to enhance the retrieval quality.

2.5 I ! 1 !
2.0 0 -
R 0.4
SV . o
1.5 =
g
1.04 L
............ 0.7
0.5+ 0.4 =
0.0 T T T T
0.0 0.1 0.2 0.3 04 0.5

FIG. 4. The overlap m, (upper five curves) and m, (lower
four curves) at T =0 as a function of a for the Q =3 [B, ] model
with the rule (10) for different values of the bias amplitude a.
The dotted (solid) lines represent the model with (without) the
ferromagnetic term and appropriate coefficients (11). A fer-
romagnetic term is seen to enhance the retrieval quality.
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Q —_— Q
H,(z2,6)=¢;, 3 W/arP(k)P(k,k’)(uk,’o—Bk,U)zkk.+%aﬁez('r‘—r) > P(kP(k,k'Nuy ,—By ,)?

kk'=1
Py 5

Q
+e ¥ 3 (ugﬂl”za_Bgﬂxa)m#1#z+7 > P(k)B, ,M+e,
' s k=1

w=1p,=1

In this case, the following order parameters appear:

13
mulyz_ﬁ ~ « <u§¢1u2’ai _Bﬁfl,ai i (37)
1 X g
m, = S KB, — 3 P(K)B,) N (38)
i=1 i% k=1
Q
M= 3 P(k)P(kk )M,
kk'=1
with
1 N
M= 3 o)) (39

together with g, g, r, and 7 given by Egs. (25), (26), (27),
and (28), respectively.

As in the model studied in Sec. IV, the overlap with a
pattern 5” *2 of the second generation is again represent-
ed by m gty The order parameter m py? which is a com-

ponent of the p,-dimensional vector m'!, measures the

overlap of the network configuration with the pattern 5“ !
of the first generation. Indeed, due to the condition (5)
on the B, the expression (38) is maximized when
o =§u ! indicating perfect retrieval. The order parameter
M. measures the number of neurons in a state k'. So M
corresponds to a weighted sum of the order parameters
M,..

The meaning of the other order parameters is as be-
fore. We remark that for the specific bias choice
By »=a,uy . the expression (38) reduces to (23) but (39)
does not reduce to (24).

B. Discussion of the retrieval properties

In this section, we study the retrieval properties of
Potts neural networks that have memorized hierarchical-
ly correlated patterns by using the truncated pseudoin-
verse learning rule (13).

We start by considering the case of a finite number of
patterns in both the first and the second generation.
Then the free energy reduces to the a—0 limit of (34),

which only depends on m pgttyr My and M. It turns out

that the relevant fixed-point equations for the retrieval
solutions are exactly equivalent to the fixed-point equa-
tion of the retrieval solutions of the Potts model with un-
biased patterns [17], independent of the choice of the ma-
trices [B]. Hence, in contrast with the networks studied
in the former section, 7, is independent of a. Hence it
equals the value of the unbiased Potts model, e.g.,
T,=1.000(Q =2), T,=2.185(Q =3),....

Next we turn to the case where each class of the

kk'=1

Py Q
S |B,, — 3 PKB,|m, . (36)
p=1| 9 k=1 !

r

second generation contains an extensive number of pat-
terns, while the number of ancestor patterns is still finite.
Again for Q =3 models at T =0 with a =a, =a,, we dis-
cuss the storage capacity as a function of a and the re-
trieval quality as a function of the loading a=p,p, /N of
the second generation. To obtain these results, the
relevant fixed-point equations for the retrieval solutions
are solved numerically.

First, we compare in Fig. 5 the storage capacity of the
truncated pseudoinverse network and the network with
the ferromagnetic term for the two representative bias
matrices indicated before. The dashed-dotted line
represents the truncated pseudoinverse network, the
dashed lines are taken from Fig. 2. They represent the
network with the ferromagnetic term. The curve for
[B;] type patterns coincides with that of the truncated
pseudoinverse model. Hence, for this type of patterns
there is no difference in storage capacity for both net-
works. This is in agreement with the signal-to-noise
analysis since, for [ B, ] type patterns, both models lead to
the same variance of the noise term. For [B,] type pat-
terns, however, the truncated pseudoinverse model leads
to a higher storage capacity than the model with the fer-
romagnetic term.

Second, the retrieval quality of the two models is com-
pared. For [B,] type patterns, both models lead to iden-
tical overlap-loading diagrams. Hence there is no
difference in retrieval quality. For [B,] type patterns,
however, differences are found as is clear from Fig. 6.
This figure shows the overlaps m, and m, as a function

0'5 1 1 1 1
0.4 TSI T T 2 -
SNITT~al2 e
0.3 4 \\\\1 \\\\s_
5]
\\\\

0.2 ~4
0.1+ L
0.0 T T T T

0.0 0.2 0.4 0.6 0.8 1.0

a

FIG. 5. The storage capacity at T'=0 as a function of the
bias amplitude a for Q =3 networks with [B,] (1) and [B,] (2)
type patterns [see Eq. (32)]. The dashed (dashed-dotted) lines
correspond with the model with the ferromagnetic term (11)
[truncated pseudoinverse network (13)]. The truncated pseudo-
inverse network has the largest storage capacity.
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FIG. 6. The overlap m, (upper five curves) and m, (lower
four curves) at T'=0 as a function of a for the Q =3 networks
with [B,] type patterns for different values of the bias ampli-
tude a. The solid (dotted) lines represent the model with the fer-
romagnetic term (11) [truncated pseudoinverse model (13)]. The
truncated pseudoinverse model leads to the best retrieval quali-

ty.

of the loading a of patterns of the second generation for
different values of a. From this figure it follows that for
each value of the loading «a, the truncated pseudoinverse
model has a higher overlap than the model with the fer-
romagnetic term. Consequently, for [B,] type patterns,
the truncated pseudoinverse model leads to a better re-
trieval quality.

In this section, we have studied the ability of Potts
neural networks to retrieve hierarchically correlated pat-
terns, which are memorized with the learning rule (13).
We have seen that for Q =3 models the truncated pseu-
doinverse model performs better than the model with the
ferromagnetic term for certain bias types.

VI. CONCLUDING REMARKS

We have discussed Q-state Potts neural networks that
are able to memorize hierarchically correlated patterns,
generated by a Markovian scheme. Two different learn-
ing rules have been considered. The Hebbian-type learn-
ing rule (10) contains three relevant cases: only storing
patterns of the second generation, storing both patterns
of the first and second generation with and without the
ferromagnetic term. The learning rule (13) is derived
from the pseudoinverse rule by keeping the first terms in
a series expansion. The free energy has been written
down for both types of networks with general Q and arbi-
trary T in replica-symmetric mean-field theory.

For Q =3 models at T =0, where each class of the
second generation consists of extensively many patterns,
while the first generation still contains a finite number of
patterns, we have calculated the storage capacity and the

_ 1
1-K, ’

R

K,—K,
(1=K,)[1=K,+p,(K,—K})] ’

S=

retrieval behavior (overlap).

First, for the models without the ferromagnetic term
(Fig. 2), the storage capacity is enhanced by storing also
the patterns of the first generation, and even further
enhanced by introducing a ferromagnetic term [recall (10)
and (11)]. However, for Q >2 models, the value of the
unbiased case is never reached. The retrieval quality is
the best for the model with the ferromagnetic term (Figs.
3 and 4).

Second, there is no difference in the retrieval behavior
of the network with the ferromagnetic term and the trun-
cated pseudoinverse model when [B;] type patterns are
stored. For [B,] type patterns, however, the pseudoin-
verse model leads to the best retrieval properties.
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APPENDIX

To derive the truncated pseudoinverse learning rule
(13) we have followed the idea of Cortes, Krogh, and
Hertz [14]. We start from the pseudoinverse learning
rule [15,16]

Kl 1 it z 1
J¥= u ([C]_ ) v U vy,
Y QZN .u'l:vzl=1 l’-2v§=1 §:‘]”2’k A gfl 2’1
(A1)
with
1 N
Cusmrvm = N (@ =1) El “ gt g (A2)

where 1 =u,, v;<p;,and 1 =pu,, v,<p,.
First, we note that after dropping all terms of order
1/V'N, the correlation matrix [ C] can be written as

[Cl=(1—K)1+(K,—K )1, +K 1, (A3)
where (]1)#1#2,,,11,2:8#1,,16”21,2, (]Pz)#ll‘z"’ﬂ’z=8#1v1’ and
(l)ﬂl#zr"x"z=l and K, K, are given by (14), (12), respec-

tively. Using the specific form of [C] its inverse is easily
found

((cn~'=RrR1-s1, —T1, (A4)
where

(AS)

(A6)
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K,
[1=K;+py(Ky =K )+p1p, K [[1— K, +p,(K; — K]
Second, inserting (A4) into (A1) results in
ul 1 Py Py Py py Py Py
Ji=—= iR 3 Ju -S> 3 u Uy, — u Uoyy ot (A8)
v NQ2 y=1p,=1 gfluz’kugylﬂz’l 1y =1pyv,=1 gfl#z’k 5?1 % ﬂl’:’s-l‘;l#z'%:l 571”2,;( §j1 B
Third, applying the law of large numbers
1 2
— u =B , (A9)
D> “2221 éli‘xf‘z’k g’:l,k
1 Py Py Q
u =2 P(p)B,y (A10)
PiPa yi=1py=1 AN o=1 P
expanding S and T in powers of 1/p, and truncating the expansion at terms of order 1/p3
1 1
S~ + , (A1)
p2(1—K3) P%(Kz_Kl)
1 1
=" T2 2 (A12)
pip2(Ky—K,)  pipiK,
results in the following expression for the synaptic couplings:
1 |z 1 1
Kl —
e = - + B B
Y NQ? ,;12;’1,;22=1 1-K, uéf'tl”z,kué‘luz,l 1-K,  py(Ky;—Ky) | glk 5?1,1
P 1 EP( )B %P( )B (A13)
K,—K, K, | = P p’kp=l PP

Finally, after some algebra we end up with the learning rule (13).
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